This chapter presents a few problems, results and algorithms from the vast discipline of Graph theory. All of these topics can be found in many text books on graphs.

Notation: \(G = (V, E) \), \(V = \) vertices, \(E = \) edges, \(|V| = n \), \(|E| = m \). Edges can be symmetric of directed (arcs). Weighted graph \(G = (V, E, w) \), \(w: E \rightarrow \) Reals. We omit other variations. e.g. parallel edges or self-loops.

4.1 Planar and plane graphs

Df: A graph \(G = (V, E) \) is **planar** iff its vertices can be embedded in the Euclidean plane in such a way that there are no crossing edges. Any such embedding of a planar graph is called a **plane or Euclidean graph**.

![The complete graph K4 is planar](image)

![K5 and K3,3 are not planar](image)

Thm: A planar graph can be drawn such a way that all edges are non-intersecting straight lines.

Df: graph editing operations: edge splitting, edge joining, vertex contraction:

- **splitting**
- **joining**
- **contraction**

Df: \(G, G' \) are homeomorphic iff \(G \) can be transformed into \(G' \) by some sequence of edge splitting and edge joining operations.

Thm (Kuratowski 1930): \(G \) is planar iff \(G \) contains no subgraph homeomorphic to \(K_5 \) or \(K_{3,3} \).

Thm (Wagner 1937): \(G \) is planar iff \(G \) contains no subgraph contractable to \(K_5 \) or \(K_{3,3} \).

Ex: Finding subgraphs can be tricky, as the Petersen graph shows:

![Left: The Petersen graph is easily seen to be contractable to K5](image)

![Right: After removal of 2 edges followed by edge joining, the Petersen graph is seen to contain K3,3](image)
4.2 Euler’s formula for plane graphs

A **plane** graph (i.e. embedded in the plane) contains **faces**. A **face** is a connected region of the plane bounded by edges. If the graph is connected, it is said to contain a single **component**. If it is disconnected it has several components. Let |V|, |E|, |F|, |C| denote the number of vertices, edges, faces, components, respectively.

Thm (Leonhard Euler): |V| - |E| + |F| = 2 for a connected graph, or more generally: |V| - |E| + |F| - |C| = 1

Pf (of the general formula for graphs that may be disconnected) by induction on |E|.

- **Basis**: |E| = 0. Without any edges, a plane graph consists of n disconnected vertices each of which is a component, and a single face: |V| - |E| = n - 0 + 1 - n = 1.
- **Induction step**: Assume Euler’s formula is correct for all graphs with |E| = k, and consider an arbitrary graph G with k+1 edges. Choose any edge e in G, delete e to obtain a clipped graph G’, and distinguish 2 cases:

 a) e is on the boundary of 2 distinct faces of G, f1 and f2. By deleting e, we lose 1 edge and 1 faces, since the former faces f1 and f2 are merged into a single face. The quantity - |E| + |F| remains unchanged.

 b) e is on the boundary of a single face f of G. By deleting e, we lose 1 edge and we gain 1 component, since the former component that contained e disconnects into 2 components. The quantity - |E| - |C| remains unchanged.

Since Euler’s formula holds for the clipped graph G’ by induction hypothesis, and the deletion of e keeps the quantity |V| - |E| + |F| - |C| unchanged, Euler’s formula holds also for G.

Thm (the number of edges in a planar graph grows at most linearly with the number of vertices):

G planar, |V| ≥ 3 -> |E| ≤ 3 |V| - 6

Pf: Consider any embedding of G in the plane. If this embedding contains faces “with holes in them”, add edges until every face becomes a polygon bounded by at least 3 edges. Proving an upper bound for this enlarged number |E| obviously proves it also for the smaller number of edges originally present. With respect to such an embedding, any edge e bounds 2 distinct faces.

Hence: # of incidences (edge e, face f) = 2 |E| ≥ 3 |F|.

Together with Euler’s formula (*3): 3 |V| - 3 |E| + 3 |F| = 6 we obtain |E| ≤ 3 |V| - 6.

4.3 Enumerating all the spanning trees on the complete graph Kn

Cayley’s Thm (1889): There are n^n - 2 distinct labeled trees on n ≥ 2 vertices.

Ex n = 2 (serves as the basis of a proof by induction): 1---2 is the only tree with 2 vertices, 2

The most elegant proof of Cayley’s Thm is based on Prüfer’s coding scheme (1918): it establishes a 1-to-1 correspondence between the set of labeled trees on n vertices and the set of n^n - 2 vectors of length n-2, whose entries are labels chosen from \{ 1, 2, .. , n \}.

Ex: The tree T at left is coded using the form shown in the middle, and filled out at right. T’s code is 4 1 4.

![Tree and code](image)

code (Tn): for i <- 1 to n-1 do (Li <- remove the currently least leaf; Hi <- the former neighbor of Li)
return [H1, H2, .. , Hn-2]

decode ([H1, H2, .. , Hn-2]):

Hn-1 <- n
for i <- 1 to n-1 do Li <- the least vertex NOT in \{ L1, .. , Li-1 \} ∪ \{ H1, .. , Hn-1 \}
return T <- \{ (L1, H1), (L2, H2), .. , (Ln-1, Hn-1) \}

The proof that Prüfer’s code establishes a 1-to-1 correspondence is by induction on n. Cayley’s Thm follows.